

KryoFlux
Stream File Documentation

By Jean Louis-Guérin
Revision 1.0- 29/10/2011

 KryoFlux Stream File Documentation

Copyleft Jean Louis-Guérin – V1.0 – 29/10/2011 page 2 / 15

Table of Content
Table of Content ... 2
Purpose .. 3
Imaging Floppy Disks with the KryoFlux device .. 4

KryoFlux Clocks & Counters .. 4
Sample Counter .. 4
Index Counter ... 4

Data Format ... 4
Description of Stream Files ... 5

Block Header ... 5
ISB (In Stream Buffer) Blocks .. 5

Flux blocks .. 5
Flux Data Encoding ... 6
NOP Blocks ... 7

OOB (Out Of stream Buffer) Blocks .. 7
Invalid block .. 8
StreamInfo block .. 8
Index block ... 8
StreamEnd block... 9
KFInfo block .. 9
EOF block .. 9

Index Timing Consideration .. 10
RPM Interpolation .. 10

Decoding Stream Files ... 11
KryoFlux Device Behaviour ... 11
KryoFlux Hardware Information ... 12
Parsing the Stream File ... 12
Analysis of Index Information ... 13

Sample Counter Overflows before Index ... 14
Index pointing after last flux .. 14
Index detected before any flux .. 14

Encoding Stream Files ... 14
Terminology ... 15
References .. 15
Document History ... 15

 KryoFlux Stream File Documentation

Copyleft Jean Louis-Guérin – V1.0 – 29/10/2011 page 3 / 15

Purpose
This document provides a description of the Stream Files used by the DTC (Disk Tool
Console) program connected to a KryoFlux Device. A Stream File is either produced by the
DTC program used in read (imaging) mode or consumed by the DTC program used in write
(backup) mode. The document also provides assistance on Decoding or Encoding Stream
Files. It is based on my interpretation of the KryoFlux documentations published by Software
Preservation Society and KryoFlux Product & Services Limited (see references) but it also
includes information based on experimentations and programing (using sources from SPS).
Note that some sections of this text are taken, almost directly, from the original SPS
referenced documents.

I want to thanks István Fabián from SPS who has provided to me with a lot of detail
information on how KryoFlux device operates and on the code to decode a Stream File.

Note: Regular user of the KryoFlux device should not be concerned by the
information presented here which is mainly of interest to programmers that
want to write tools around the Stream Files.

The data in the Stream File is binary and therefore cannot be displayed or edited with a text
editor. It is important to note that Stream File content has not been conceived per se as a file
format, because it is actually an exact copy of the byte Stream Protocol used between the
KryoFlux device and the host system when communicating over an USB link.

The byte Stream Protocol is optimized for a communication budget and a CPU budget. The
KryoFlux SoC has dedicated sampling, communication etc. hardware, but each must be
served via interrupts for asynchronous and efficient operation. Therefore the firmware has
various asynchronous sub-systems communicating with the hardware, with very specific
requirements, constraints and CPU budget. If the firmware fails to serve these, the system
will become unusable. You have to realize that a single track can have about 500,000 flux
reversals per second for a High Density disks that is streamed to the host computer via a
limited bandwidth USB link.

Therefore the Stream File/Protocol is defined for transfer and processing efficiency and
some complexity arises from this during decoding or encoding.

Note that Stream files are hardware specific (to the KryoFlux device) and therefore are not
intended for long term preservation. Therefore it is recommended to use the draft format
for long term storage of disk data.

WARNING: The Stream file format is not finalized and will be changed as
needed. We therefore recommend you use the Draft file format. The version
described here is Version 2.0 of DTC (currently in beta test) that comes with a
slightly enhanced stream protocol that transfers additional data (hardware
clock, time stamp, etc.).

http://www.softpres.org/glossary:KryoFlux
http://www.softpres.org/
http://www.softpres.org/
http://kryoflux.com/

 KryoFlux Stream File Documentation

Copyleft Jean Louis-Guérin – V1.0 – 29/10/2011 page 4 / 15

Imaging Floppy Disks with the KryoFlux device
In order to capture everything on a floppy disk, we need to sample all the flux reversals
between two Index Signals. The KryoFlux device will start sampling data before the first
Index Signal, and after the last Index Signal. This is important to ensure everything from a
disk is captured. Outside an Index Signal data cannot be meaningfully decoded.

For various reasons, especially for games, multiple revolutions of data should be captured in
a constant stream. This means a stream file may contains more than two Index Signals. For
SPS purposes, the minimum requirement is five. Having multiple revolutions is generally
helpful for analysis.

KryoFlux Clocks & Counters
The KryoFlux Device is operating from a Master Clock (mck). From this master clock two
other clocks (obviously synchronous) are derived:
• The Sample Clock (sck) used by the Sample Counter to sample Flux reversals
• The Index Clock (ick) used by the Index Counter to sample Index Signals

The clock frequencies are required to convert the flux reversal timings and index timings
values to absolute timing values are specified by the KryoFlux hardware, and can be queried
using a device command. If the KryoFlux hardware changes at some point in the future,
these frequencies may change. The values given here are the default values you should use
for the current hardware (unless specific HW info has been passed).

All timings here are represented as (64-bit) floating point values.

Abbreviation Name Clock Value

mck Master Clock ((18432000 * 73) / 14) / 2

sck Sample Clock mck / 2

ick Index Clock mck / 16

Sample Counter
The Sample Counter is used to measure the elapsed time between two flux reversals, or
between a Flux reversal and an Index Signal. This counter has a width of 16 bits and possible
overflows are recorded. This counter is reset after each Flux reversal recording.

Index Counter
The Index Counter is a “free running” counter (not reset). The value of this counter is
recorded each time an Index Signal is detected.

Data Format
Data in a Stream File is byte-aligned for processing efficiency. This means that no
information is encoded at the bit level and therefore there is no need to break a byte down
into bits in order to be interpreted further.

Data stored in 16 or 32 bits words uses the little-endian bytes ordering (the least significant
byte first, and the most significant byte last). This does not apply to Flux Blocks that use a
specific encoding.

 KryoFlux Stream File Documentation

Copyleft Jean Louis-Guérin – V1.0 – 29/10/2011 page 5 / 15

Description of Stream Files
The data in a Stream File is organized in Blocks that have a variable length ranging from one
to many bytes. The first byte of a stream file Block is called the Block Header. It specifies
how to interpret the Block. A stream file contains two types of Blocks:
• The ISB (In Stream Buffer) blocks that are used to communicate the timing value of the

sampled flux reversals.
• The OOB (Out Of stream Buffer) blocks that are used to help in the interpretation-

verification of the Stream File as well as to transmit other information like Index Signals
timing, or KryoFlux hardware information.

For explanation about the ISB / OOB terminology please refer to KryoFlux Device Behavior

The only useful information stored in a Stream File is:
• Timing of Flux Reversals: All data flux reversals detected by the KryoFlux device are

stored in ISB Blocks.
• Timing of Index Signals: All index signals detected by the KryoFlux device are

transmitted in special OOB blocks: the Index Blocks. The provided Index information
allows to compute the precise Index Time (time between to index signals) as well as to
find the Index Position in reference to the data flux reversals.

Block Header
The interpretation of the information contained in a Block of data depends on the Block
Header. This header can take the following values:

Header Name Length Description

0x00-0×07 Flux2 2 Flux block: New flux reversal coded on two bytes

0×08 Nop1 1 NOP block: Continue decoding at current position + 1

0×09 Nop2 2 NOP block: Continue decoding at current position + 2

0x0A Nop3 3 NOP block: Continue decoding at current position + 3

0x0B Ovl16 1 Flux block: Next flux reversal to be increased by 0×10000.

0x0C Flux3 3 Flux block: New flux reversal coded on three bytes

0x0D OOB variable First byte of an Out Of stream Buffer block

0x0E-0xFF Flux1 1 Flux block: New flux reversal coded on one byte

ISB (In Stream Buffer) Blocks
An ISB Block can either be a Flux Blocks or a NOP Block. Another way to look at it: an ISB
Block is any types of block that is not an OOB Blocks.

Flux blocks
A Flux Block is used to store in a stream file the Sample Counter value, corresponding to the
number of Sample Clock Cycles (sck) between two flux reversals. A Flux Block has a Block
Header in one of these two ranges: 0x00-0x07 or 0x0E-0xFF.

Remember that to get absolute timing values from the sampled values you need to divide
these numbers by the sample clock:

AbsoluteFluxTiming = FluxValue / sck;

 KryoFlux Stream File Documentation

Copyleft Jean Louis-Guérin – V1.0 – 29/10/2011 page 6 / 15

Flux1 block
This block allows storing the timing of a sampled flux reversal coded on only one byte. The
Block Header has a value in the range 0x0E-0xFF.

Header
In this case the value of the sampled flux reversal is directly equal to the value of the Block
Header. In practice you will find that most of the flux reversal values fall into this range
(0x0E-0x0FF) and therefore this contribute to a very efficient coding of the stream file.

FluxValue = Header;

Flux2 block
This block allows storing the timing of a sampled flux reversal coded on two bytes. The Block
Header has a value in the range 0x00-0x07.

Header Value1
In this case the value of the sampled flux reversal is computed as follow:

FluxValue = (Header << 8) + Value1;

Flux3 block
This block allows storing the timing of a sampled flux reversal coded on three bytes. The
Block Header has a value equal to 0x0C.

0x0C Value1 Value2
In this case the value of the sampled flux reversal is computed as follow:

FluxValue = (Value1 << 8) + Value2;

Ovl16 block
This block indicates that the next Flux Block has a value superior to the max value of a 16 bits
number (0xFFFF). The Block Header has a value equal to 0x0B.

0x0B
In this case the next Flux Block value is incremented by 0x10000.

FluxValue = 0x10000 + NextFluxValue;

This block is inserted whenever the Sample Counter overflows. There is no limit on the
number of Ovl16 blocks present in a stream, and so the maximum value for a flux reversal is
virtually unlimited, although the decoder in the KryoFlux host software uses a 32 bits value.
Flux reversal values that do not fit into 16-bits are quite unusual, but have been found in
games that attempt to fool the AGC (Automatic Gain Control) of the drive electronics.

Flux Data Encoding
A Flux2 block could be used to encode data in the range 0x0000-0x07FF. But in practice it is
more efficient to use a Flux1 block (only one byte) for encoding data in the range 0x000E-
0x00FF. Therefore the Flux2 is only used to encode data in the range 0x0000-0x000D or data
in the range 0x0100-0x07FF. For similar reasons (best efficiency) a Flux3 block is only used
for encoding data in the range 0x0800-0xFFFF.

If the flux reversal value to transmit is bigger than 0xFFFF then one or several ovl16 block(s)
is (are) used to add 0x10000 to the next flux reversal value.

 KryoFlux Stream File Documentation

Copyleft Jean Louis-Guérin – V1.0 – 29/10/2011 page 7 / 15

NOP Blocks
A NOP (No-operation) Block is used to skip one or several byte(s) in the stream buffer. This
makes it possible for the firmware to create data in its ring buffer without the need to break
up a single code sequence when the filling of the ring buffer wraps. A NOP block starts with a
Block Header in the ranges 0x08-0x0A.

NOP1 block
NOP1 block is used to skip one byte in the buffer. The Block Header is equal to 0x08.

0x08
Just skip this byte during decoding.

NOP2 block
NOP2 block is used to skip two bytes in the buffer. The Block Header is equal to 0x09.

0x09 0xXX
Just skip these two bytes during decoding.

NOP3 block
NOP3 block is used to skip three bytes in the buffer. The Block Header is equal to 0x0A.

0x0A 0xXX 0xYY
Just skip these three bytes during decoding.

OOB (Out Of stream Buffer) Blocks
An OOB Block is either used to help in the interpretation/verification of the stream file or it
contains specific information (index signal, KryoFlux HW). Note that OOB blocks are sent
completely asynchronously of the ISB blocks (please refer to KryoFlux Device Behavior).

An OOB Block is composed of an OOB Header Block (always four bytes) followed by an
optional OOB Data Block. The OOB Block Header contains three fields:
• The first field (one byte) contains the Block Header and is always equal to 0x0D.
• The second field (one byte) describes the Type of the OOB (see below).
• The third field (2 bytes) indicates the Size of the optional OOB Data Block.

0x0D Type OOB Data BlockSize
The next optional OOB Data Block contains information specific to each Type of OOB Block.

The following table lists the different types of OOB Block

Type Name Meaning

0×00 Invalid Invalid OOB

0×01 StreamInfo Stream Information (multiple per track)

0×02 Index Index signal data

0×03 StreamEnd No more flux to transfer (one per track)

0x04 KFInfo HW Information from KryoFlux device

0x0D EOF End of file (no more data to process)

 KryoFlux Stream File Documentation

Copyleft Jean Louis-Guérin – V1.0 – 29/10/2011 page 8 / 15

Invalid block
It is not clear when this OOB Block is used but it clearly indicates a problem .

0x0D 0x00 0x00
An Invalid block contains the following fields:
• Type = 0x00
• Size = 0x00?

StreamInfo block
A StreamInfo block provides information on the progress of the data transfer. It is sent
whenever the communication and the KryoFlux CPU budget allows it, naturally the ordering
of the StreamInfo blocks is guaranteed. It is possible to have several StreamInfo blocks at
once. It is used primarily to check that no bytes have been lost during transmission but it can
also be used to compute the transfer speed of the USB link between the host and the
KryoFlux device.

0x0D 0x01 0x08 Stream Position Transfer Time
A StreamInfo block contains the following fields:
• Type = 0x01
• Size = 0x08
• Stream Position (4 bytes) indicates the position (in number of bytes) of the OOB Block

Header in the stream buffer.
• Transfer Time (4 bytes) gives the elapsed time (in milliseconds) since the last StreamInfo

block. It is therefore possible to calculate the transfer speed between the host and the
board as well as the transfer’s jitter.

Index block
This block is used to provide timing information about a detected index.

0x0D 0x02 0x0C Stream Position Sample Counter Index Counter

An Index block contains the following fields:
• Type = 0x02
• Size = 0x0C (12 decimal)
• Stream Position field (4 bytes) indicates the position (in number of bytes) in the stream

buffer of the next flux reversal just after the index was detected.
• Sample Counter (4 bytes) gives the value of the Sample Counter when the index was

detected. This is used to get accurate timing of the index in respect with the previous
flux reversal. The timing is given in number of Sample Clock (sck). Note that it is possible
that one or several sample counter overflows happening before the index is detected.

• Index Counter stores the value of the Index Counter when the index is detected. The
value is given in number of Index Clock (ick). To get absolute timing values from the
index counter values you need to divide these numbers by the index clock (ick)

For more information on index timing interpretation see Index Timing Consideration and
Analysis of Index Information.

 KryoFlux Stream File Documentation

Copyleft Jean Louis-Guérin – V1.0 – 29/10/2011 page 9 / 15

StreamEnd block
A StreamEnd block indicates that all the Flux blocks have been transmitted. It also provides a
result code that indicates if the streaming was done correctly.

0x0D 0x03 0x08 Stream Position Result Code
A StreamEnd block contains the following fields:
• Type = 0x03
• Size = 0x08
• Stream Position field (4 bytes) indicates the position (in number of bytes) of the OOB

Block Header in the stream file.
• Result Code (4 bytes) returns a value as defined below. A value of 0 indicates that the

streaming was successful any other value indicates various problems.

Result Code:

Value Name Meaning

0×00 Ok Transfer success (does not imply data is good, just that streaming was successful)

0×01 Buffer Buffering problem - data transfer delivery to host could not keep up with disk read

0×02 No Index No index signal detected

KFInfo block
A KFInfo block is used to transmit information from the KryoFlux device to the host.

0x0D 0x04 Size Info Data (ASCII)
A KFInfo block contains the following fields:
• Type = 0x04
• Size = number of bytes of the KFInfo data block
• Info Data – an ASCII String of information

More details about Hardware Information transmitted can be found in KryoFlux Hardware
Information

EOF block
An EOF block is used to indicate the end of the stream file. No processing needs to be done
beyond this block.

0x0D 0x0D 0x0D0D
An EOF block contains the following fields:
• Type = 0x0D
• Size = 0x0D0D (not meaningful)

 KryoFlux Stream File Documentation

Copyleft Jean Louis-Guérin – V1.0 – 29/10/2011 page 10 / 15

Index Timing Consideration
Flux Reversal timing values recorded in a Stream File only makes sense when the Index
Signals positions are known. Once all of the data in the stream file has been processed,
several computations are required on the index data in order to determine:
• Index Position: the exact position where an Index Signal occurred in reference to the

Flux Reversals. It can be determined during decoding by storing the position of all the
flux reversals and the position where each index signal occurs.

• Index Time: This is the time taken for one complete revolution of the disk. It is equal to
the number of index clock cycles since the last index occurred. It can also be calculated
by summing all the flux reversal values that we recorded since the previous index,
adding the Sample Counter value at which the index was detected (see Sample Counter
field in Index Block) and subtracting the Sample Counter value of the previous index.
The computation details are explained in Analysis of Index Information.

Index Time

Timer Timer

Index n+1
Index Clock n+1

Index n
Index Clock n

The Index Time is important to get the actual RPM. For a perfectly aligned 300 RPM drive the
time measured would be 200ms (300 Revolutions Per Minute = 5 revolutions per second, 1/5
second is 200 milliseconds). We cannot assume that this is the case (we know from
experience that it very often isn’t), and so the current RPM is continuously monitored for
each revolution sampled. Note that up until the first index, a reliable Index Time cannot be
generated as it will always be a partial revolution.

The Index Position is also important, as it is the only marker on a disk that can be used to
perfectly align data when writing, or deciding on the exact position of data when reading.

RPM Interpolation
To increase reliability, the decoding software can perform RPM interpolation when
converting timing to absolute values. If the RPM of one index is significantly different from
the following index, it may be that the disk drive doing the reading is unreliable, and the
drive speed from index to index is not constant. But even if RPM is very stable, it may have
been set incorrectly, like say 301 RPM instead of 300 RPM. This would affect all flux reversals
across the track. Since there are hundreds of thousands of samples, the differences will add
up eventually. We can moderate this affect by converting each flux value using an
interpolated RPM value. Various interpolation algorithms are possible to do this. For
example the time measured for the flux reversals can be corrected using the speed of the
drive used for reading (e.g. 301 RPM), and the speed of the drive of the intended target
platform (i.e. 300 RPM) with the following formula:

CorrectedValue = OriginalValue * TargetRPM/ActualRPM;

 KryoFlux Stream File Documentation

Copyleft Jean Louis-Guérin – V1.0 – 29/10/2011 page 11 / 15

Decoding Stream Files
Decoding of a KryoFlux stream file should be performed in two passes:
• The first pass is used to actually parse the Stream File in order to retrieve and store all

the important information (flux/index timing and positioning).
• The second pass is used to analyze the data retrieved in order to compute the exact

positioning of the Index Signals relative to flux reversals as well as the index times.

It is also recommended to check if KryoFlux hardware information about SCK and ICK has
been passed. If this is the case these values should be used rather than default values.

KryoFlux Device Behaviour
In order to correctly process the data stored in a Stream File it is useful to have a basic
understanding of the way the KryoFlux Device operates.

When imaging signals from a floppy drive reading a floppy disk there are to main processes
running independently in the KryoFlux device:
• The first process is referred as the sampling process. As the name indicates it is

responsible of capturing the data from the floppy drive and storing this information in a
buffer called the stream buffer. Therefore this buffer only contains the Flux blocks
(including Ovl16 blocks) and eventually some NOP blocks (considered as data without
value).

F1 F3 F2 F2 NOP3OVF1 F1F1 F1 Stream Buffer

Data

Index

In this hypothetical example (not strictly realistic) we can see that each flux reversal
value is stored by the KryoFlux device in the stream buffer as a Flux1 or Flux2 or Flux3
blocks (see Flux Data Encoding). This value corresponds to the value of the Sample
Counter at the time of the flux reversal and once recorded the counter is reset.
Whenever the Sample Counter overflows an Ovl16 block is stored in the stream buffer.
The firmware can also add NOP blocks in the stream buffer when necessary (see NOP
blocks). When an index signal is detected the information is not placed in the stream
buffer but the position of the next flux reversal in the stream buffer is recorded as well
as the value of the Sample Counter (time from previous flux reversal) and the Index
Counter.

• The second process is referred as the transfer process. It is responsible of transferring
the data from the KryoFlux device to the host over the USB link. The first priority of the
transfer process this transmit the data stored in the stream buffer. But, whenever the
communication and the KryoFlux CPU budget allow it, this process also transmits “extra
information”: the OOB Blocks. They are used either to transfer index information or to
help in the transfer decoding. These blocks are not part of the Stream Buffer and are
“inserted on the fly”, by the transfer process, between the ISB blocks at unpredictable
times. This implies that the information in the OOB Blocks is completely asynchronous
from the information in the ISB Block. For example it is possible to transmit information
about an Index that refer to a flux reversal net yet transmitted.

 KryoFlux Stream File Documentation

Copyleft Jean Louis-Guérin – V1.0 – 29/10/2011 page 12 / 15

The sampling can be stopped after a certain amount of index signals automatically or
programmatically via a command; DTC may use both. Right now streaming is requested to
stop after a specified number of indices, but if DTC detects certain errors it may send a stop
command anyway, that would stop the streaming as soon as possible, i.e. at some random
location on the track. Even if sampling is to be stopped at an index signal, since it is
independent of streaming, it may or may not stop immediately, it all depends on luck.

The transfer process always sends back all the data that was sampled before signaling the
transfer finished to the host. In other words; there may be another one or more samples
after the last index signal (if index stop mode used) or there may not be.

KryoFlux Hardware Information
Starting with version 2.0 of the firmware the KryoFlux device transmits information in a
KFInfo block. Most of the data transmitted are informative about the version of firmware,
hardware etc. Among the information transmitted two strings are particularly important: the
sample clock (sck) and the index clock (ick). Whenever available you should use these values
instead of the default values specified in KryoFlux Clocks & Counters section.

Here is an example of the information transmitted:
host_date=2011.03.21
host_time=17:20:17
name=KryoFlux DiskSystem
version=2.00
date=Mar 19 2011
time=14:35:18
hwid=1
hwrv=1
sck=24027428.5714285
ick=3003428.5714285625

Parsing the Stream File
It is recommended to store the meaningful information in arrays of structures (Flux, Index,
and Info) that can be queried by the target application. The arrays should be allocated from
the memory pool and released at the end of the program. The memory management of the
different arrays is not described here.

Parsing is driven by the Block Header that defines the nature and length of the Blocks.

All the blocks are decoded in a loop that will scan the complete Stream File until an EOF
block is found. Each Block is processed in three steps:
• We first compute the length of the Block based on the header type (this information is

used to move the pointer to the next block):
 For Flux1, Nop1, and Ovl16 blocks the length is one
 For Flux2, Nop2 the length is two
 For Flux3, Nop3 the length is three
 For OOB Block the length is equal to the length of the OOB Header Block (4 bytes)

plus the length of the OOB Data Block given in the Size field (see OOB Blocks). The
only exception is the EOF block where the size is not meaningful.

• In the second step we compute the actual value of the flux reversal when the current
block is of type Flux1, or Flux2, or Flux3, or Ovl16.

 KryoFlux Stream File Documentation

Copyleft Jean Louis-Guérin – V1.0 – 29/10/2011 page 13 / 15

• The final step is to actually process the block:
 If the data block is of type Flux1, Flux2, or Flux3 we create a new entry in the Flux

array and we store the Flux Value and Stream Position.
 If the block is a StreamInfo block we use the Stream Position information to check

that no bytes were lost during transmission. We can also use the Transfer Time for
statistical analysis of the transfer speed.

 If the block is an Index block. We create a new entry in the Index array and we
store the Stream Position, the Sample Counter and Index Clock values.

 If the block is a KFInfo block we copy the information into the Info String.
 If the block is a StreamEnd block we use the Stream Position information to check

that no bytes were lost during transmission and we look at the Result Code to
check if errors where found during processing.

 If the block is an EOF block we stop the parsing of the file.

When parsing of the stream file is finished we have all the data information in the three
arrays (Flux, Index, and KFInfo) but we still need to analyze the Index information as
explained in the next section.

Analysis of Index Information
It is extremely important to be able to position the different Index Signals in respect with
the flux reversals (and vice versa) and it is also important to measure the exact elapsed time
between two Index Signals.

For that matter we need to perform some analysis on the stored data. The following pictures
shows an example of a buffer containing Flux and NOP blocks as stored in the KryoFlux
stream buffer (we could also have found some Ovl16 blocks). As we have seen for each flux
reversal we store the value as well as the stream position and for each Index Signal we store
the Sample Counter and Index Clock values as well as the stream position of the next flux
reversal when the index was detected as shown in the next picture.

F1 F3F2 NOP3F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1

fluxValue fluxPos
fluxValue fluxPos
fluxValue fluxPos
fluxValue fluxPos
fluxValue fluxPos

fluxValue fluxPos
fluxValue fluxPos
fluxValue fluxPos

fluxPos

F3 F1 F1 F1 F1 F1

fluxPos

F3

FluxArray

IndexArray
timer
timer

F1F1 F1 F1

 KryoFlux Stream File Documentation

Copyleft Jean Louis-Guérin – V1.0 – 29/10/2011 page 14 / 15

If we look more precisely to the timing information close to two adjacent Index Signals we
have something like this:

Index Signal

Data Signal

fluxValue

Timer

fluxValue

Timer

Index Time

Index Signal

Data Signal

fluxValue

Timer

fluxValue

Timer

Index Time

Post Post

For each Index Signal
• The Stream Position points to the position of the next flux reversal in the stream buffer.
• The Sample Counter value indicates how far from the beginning of the previous flux

reversal the index is detected.

So if we want to compute the Index Time we have to sum all the flux reversals values
between the two Index Signals then subtract the Time value of the first index signal and add
the Time value of the second index signal. Note that all these timing are given in number of
sample clocks.

Another alternative to compute the Index Time is to take the Index Clock value of the second
index and subtract the Index Clock value of the first index. This gives the number of index
clock between the two index signals.

There are several marginal conditions for the Index signals that you should consider.

Sample Counter Overflows before Index
Some complexity arises if what was written last in the stream buffer is overflow. The stream
and index decoder should take care of these cases; the stream decoder has to find the "real"
stream position while decoding the data and the index decoder uses has to find the correct
index referenced. This is somewhat tricky as at this point flux reversals are already decoded
so they only ever are represented by one value, so the index decoder checks the range of
stream positions elapsed between two cells.

Index pointing after last flux
The KryoFlux firmware always point to the next position to be written by the sampler. The
stream decoder should add an extra empty flux at the end of the stream but this flux is not
made part of the decoded stream at this point since we don't know if it happened or not,
without decoding the index data. If the index analyzer detects that the index was pointing to
a non-existent flux it has to “activate” the empty flux added above.

Index detected before any flux
There is another edge case when an index signal is detected but there is no previous flux
reversal.
Encoding Stream Files
Not yet implemented in current release version.

 KryoFlux Stream File Documentation

Copyleft Jean Louis-Guérin – V1.0 – 29/10/2011 page 15 / 15

Terminology
• Flux Reversal: A flux reversal or flux transition under the floppy drive head. This is

referred as a cell in the original SPS documentation.
• ISB Blocks: Any Blocks that are not OSB blocks (i.e. with a Block Header different from

0x0D). In Stream Buffer blocks contain flux reversal information placed in the stream
buffer by the KryoFlux sampling process. This is referred as stream data in the original
SPS documentation

• OOB Blocks: Informational Blocks used to transmit Index information or to help in
decoding stream file. OOB Blocks have a Block Header equal to 0x0D. Out Of stream
Buffer blocks contain extra information (not in the stream buffer) transferred to the
host by the KryoFlux transfer process. This is referred as Out Of Band in original SPS
documentation

• Stream Position: Position in the original KryoFlux stream buffer (i.e. without the
insertion of the OOB blocks)

References
• SPS KryoFlux Project Presentation
• SPS Stream Protocol

Document History
• V1.0 – 29/10/2011 – Added Index analysis marginal cases, KryoFlux HW information

(firmware 2.0). Lots of minor fixes and terminology cleaning
• V0.3 – 10/08/2011 – Added Decoding Stream Files section with several graphics. Fixed

terminology to be more consistent with SPS terminology. Update based on feedback
from István Fabián.

• V0.2 – 08/08/2011 – Fixed errors, added information
• V0.1 – 24/07/2011 – Initial draft

http://www.softpres.org/glossary:KryoFlux
http://www.softpres.org/kryoflux:stream

	Table of Content
	Purpose
	Imaging Floppy Disks with the KryoFlux device
	KryoFlux Clocks & Counters
	Sample Counter
	Index Counter

	Data Format

	Description of Stream Files
	Block Header
	ISB (In Stream Buffer) Blocks
	Flux blocks
	Flux1 block
	Flux2 block
	Flux3 block
	Ovl16 block

	Flux Data Encoding
	NOP Blocks
	NOP1 block
	NOP2 block
	NOP3 block

	OOB (Out Of stream Buffer) Blocks
	Invalid block
	StreamInfo block
	Index block
	StreamEnd block
	KFInfo block
	EOF block

	Index Timing Consideration
	RPM Interpolation

	Decoding Stream Files
	KryoFlux Device Behaviour
	KryoFlux Hardware Information
	Parsing the Stream File
	Analysis of Index Information
	Sample Counter Overflows before Index
	Index pointing after last flux
	Index detected before any flux

	Encoding Stream Files
	Terminology
	References
	Document History

